Stacking with Multi-response Model Trees
نویسندگان
چکیده
We empirically evaluate several state-of-the-art methods for constructing ensembles of classifiers with stacking and show that they perform (at best) comparably to selecting the best classifier from the ensemble by cross validation. We then propose a new method for stacking, that uses multi-response model trees at the meta-level, and show that it outperforms existing stacking approaches, as well as selecting the best classifier from the ensemble by cross validation.
منابع مشابه
A comparison of stacking with meta decision trees to other combining methods
Meta decision trees (MDTs) are a method for combining multiple classifiers. We present an integration of the algorithm MLC4.5 for learning MDTs into the Weka data mining suite. We compare classifier ensembles combined with MDTs to bagged and boosted decision trees, and to classifier ensembles combined with other methods: voting, grading, multi-scheme and stacking with multi-response linear regr...
متن کاملA comparison of stacking with MDTs to bagging, boosting, and other stacking methods
In this paper, we present an integration of the algorithm MLC4.5 for learning meta decision trees (MDTs) into the Weka data mining suite. MDTs are a method for combining multiple classifiers. Instead of giving a prediction, MDT leaves specify which classifier should be used to obtain a prediction. The algorithm is based on the C4.5 algorithm for learning ordinary decision trees. An extensive pe...
متن کاملIs Combining Classifiers Better than Selecting the Best One
We empirically evaluate several state-of-theart methods for constructing ensembles of heterogeneous classifiers with stacking and show that they perform (at best) comparably to selecting the best classifier from the ensemble by cross validation. We then propose a new method for stacking, that uses multi-response model trees at the meta-level, and show that it clearly outperforms existing stacki...
متن کاملComparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data
Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use conventional models for high dimensional genetic data in which p > n. The present study compared th...
متن کاملMulti-objective optimization of buckling load for a laminated composite plate by coupling genetic algorithm and FEM
In this paper, a combination method has been developed by coupling Multi-Objective Genetic Algorithms (MOGA) and Finite Element Method (FEM). This method has been applied for determination of the optimal stacking sequence of laminated composite plate against buckling. The most important parameters in optimization of a laminated composite plate such as, angle, thickness, number, and material of ...
متن کامل